Performance Improvement of High Efficiency Mono-Crystalline Silicon Solar Cells by Modifying Rear-Side Morphology

نویسندگان

  • Chung-Yuan Kung
  • Chih-Hsiang Yang
  • Chun-Wei Huang
  • Wen-Zhang Zhu
  • Hai-Jun Lin
  • Alejandro Pérez-Rodríguez
چکیده

In this work, aluminum oxide films with excellent passivation effects were prepared on the rear-side surface of passivated emitter and rear cells (PERCs) using a self-developed spatial atomic layer deposition system. Various rear-side surface morphologies were obtained through different etching treatments. We compared the PERCs with standard etching treatment and further polishing processes on rear-side surfaces. Experimental results show that compared with the unpolished cell, the polished cell attained superior electrical performance, particularly in open-circuit voltage (Voc) and short-circuit current density (Jsc), because of the more effective rear-side surface passivation and reabsorption of long-wavelength light. The improvement in Voc and Jsc raised the conversion efficiency to 19.27%. This study verifies that despite polished cells requiring complex processes, the polishing treatment displays application potential for achieving high efficiency in the solar industry.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Distributed Reflector Structure and Diffraction Grating Structure in the Solar Cell

Today, due to qualitative growth and scientific advances, energy, especially electricity is increasingly needed by human society. One of the almost endless and pure energy which have been paid attention over the years is the solar energy. Solar cells directly convert solar energy into electrical energy and are one of the main blocks of photovoltaic systems. Significant improvement has been made...

متن کامل

Calcium contacts to n-type crystalline silicon solar cells

Direct metallization of lightly doped n-type crystalline silicon (c-Si) is known to routinely produce non-Ohmic (rectifying) contact behaviour. This has inhibited the development of n-type c-Si solar cells with partial rear contacts, an increasingly popular cell design for high performance p-type c-Si solar cells. In this contribution we demonstrate that low resistance Ohmic contact to n-type c...

متن کامل

15.7% Efficient 10-μm-thick crystalline silicon solar cells using periodic nanostructures.

Only ten micrometer thick crystalline silicon solar cells deliver a short-circuit current of 34.5 mA cm(-2) and power conversion efficiency of 15.7%. The record performance for a crystalline silicon solar cell of such thinness is enabled by an advanced light-trapping design incorporating a 2D inverted pyramid photonic crystal and a rear dielectric/reflector stack.

متن کامل

Effect of Silicon Nanowire on Crystalline Silicon Solar Cell Characteristics

Nanowires (NWs) are recently used in several sensor or actuator devices to improve their ordered characteristics. Silicon nanowire (Si NW) is one of the most attractive one-dimensional nanostructures semiconductors because of its unique electrical and optical properties. In this paper, silicon nanowire (Si NW), is synthesized and characterized for application in photovoltaic device. Si NWs are ...

متن کامل

Advancements in n-Type Base Crystalline Silicon Solar Cells and Their Emergence in the Photovoltaic Industry

The p-type crystalline silicon wafers have occupied most of the solar cell market today. However, modules made with n-type crystalline silicon wafers are actually the most efficient modules up to date. This is because the material properties offered by n-type crystalline silicon substrates are suitable for higher efficiencies. Properties such as the absence of boron-oxygen related defects and a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017